A nonparametric wet/dry spell model for resampling daily precipitation

نویسندگان

  • Upmanu Lall
  • Balaji Rajagopalan
  • David G. Tarboton
چکیده

A nonparametric wet/dry spell model is developed for resampling daily precipitation at a site. The model considers alternating sequences of wet and dry days in a given season of the year. All marginal, joint, and conditional probability densities of interest (e.g., dry spell length, wet spell length, precipitation amount, and wet spell length given prior to dry spell length) are estimated nonparametrically using at-site data and kernel probability density estimators. Procedures for the disaggregation of wet spell precipitation into daily precipitation and for the generation of synthetic sequences are proffered. An application of the model for generating synthetic precipitation traces at a site in Utah is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Daily Precipitation from a Nonparametric Renewal Model

Wet/dry spell characteristics of daily precipitation are of interest for a number of hydrologic applications (e.g., flood forecasting or assessment of erosion potential). Here, we examine issues related to designing an appropriate nonparametric scheme that focuses on spell characteristics for resampling historical daily precipitation data. A subset of the nonparametric wet/dry spell model prese...

متن کامل

Analysis of the Spell of Rainy Days in Lake Urmia Basin using Markov Chain Model

In this study, the Frequency and the spell of rainy days was analyzed in Lake Uremia Basin using Markov chain model. For this purpose, the daily precipitation data of 7 synoptic stations in Lake Uremia basin were used for the period 1995- 2014. The daily precipitation data at each station were classified into the wet and dry state and the fitness of first order Markov chain on data series was e...

متن کامل

Downscaling of daily rainfall occurrence over Northeast Brazil using a Hidden Markov Model

A hidden Markov model (HMM) is used to describe daily rainfall occurrence at ten gauge stations in the state of Ceará in northeast Brazil during the February–April wet season 1975–2002. The model assumes that rainfall occurrence is governed by a few discrete states, with Markovian daily transitions between them. Four “hidden” rainfall states are identified. One pair of the states represents wet...

متن کامل

تحلیل شدت و تداوم دوره‌های خشک و مرطوب بر اساس شاخص‌های مبتنی بر بارش و تبخیر- تعرق

Spatio-temporal variability of wet and dry spells can be controlled by climate variability within a watershed and will affect availability of water resources and management plans. The application of the wet-dry spell analysis is presented for seven synoptic stations in the western part of Iran (Kurdistan Province). Numbers of consecutive months with standardized amount greater or less than the ...

متن کامل

The El Nino-Southern Oscillation and winter precipitation extremes over India

Daily rainfall data for the winter season October–December for the long period of 102 years 1901–2002 over southeast peninsular India have been used to study the characteristics of daily precipitation extremes. The frequency and intensity of extreme precipitation events do not show statistically significant long-term trend. The relationship of El Nino-southern oscillation index with these extre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997